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ABSTRACT

The USAF ATHENA is a re-entry test vehicle which has four solid
propellant stages. A midcourse correction type of guidance is used
to compensate for boost dispersions by adjusting the third stage
attitude and ignition time. The guidance computations are performed
in a ground based digital computer using radar data obtained after
second stage burnout. Because this is a re-entry test vehicle, the
guidance system must cause the payload to meet various re-entry
constraints as wellas the usual impact point constraint. The com-
plete derivation of the guidance equations and a description of the

entire guidance loop are presented in this report.
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SECTION 1

INTRODUCTION

The purpose of the USAF ATHENA vehicle is to deliver test payloads at
typical ballistic missile re-entry conditions for the Advanced Ballastic Re-
Entry Systems (ABRES) program. The ATHENA is launched from Green
River, Utah, and the payloads impact on the White Sands Missile Range
(WSMR) in New Mexico.

The ATHENA vehicle, consisting of four solid propellant stauges which are
burned to propellant depletion, is launched from a rail launcher. The
launcher is oriented so as to compensate for winds, based on meteorological
data obtained just prior tolaunch. The first and second stages are fired in
an upward direction and are controlled by a combination of spin stabilization
and fixed aerodynamic fins. This type of control, which causes the vehicle
to fly near zero angle of attack, has been used on many sounding rockets.
After second stage burnout the vehicle is despun and a reaction jet attitude
control system orients the third and fourth stages in a nominal attitude

relative to a prelaunch-erected gyro reference system.

The attitude corrections and third stage ignition time required to compensate
for dispersions which occur during first and second stage operation are com-
puted using radar data acquired after second stage burnout. These computa-
tions are performed in a ground based digital computer at WSMR and the
necessary commands are then transmitted to the vehicle. After the vehicle
has stabilized in the proper attitude, it is spun up to a rate high enough to
inertially stabilize the third and fourth stages during thrusting, after which
the attitude control system is separated. The third stage is then ignited at
the computed time and the fourth stage ignites at a predetermined time after

third stage burnout.



The purpose of this document is to present the derivation of the equations
used to determine the required third and fourth stage attitude and ignition

time from the radar data acquired after second stage burnout.
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SECTION 2

PROBLEM STATEMENT

The ATHENA guidance problem is similar to the classical midcourse
correction problem; that is, the position and velocity of the vehicle are
determined with the use of ground based radars and this information is then
used to determine the direction and time of initiation of a velocity increment
that satisfies given constraints. The magnitude of the velocity increment
cannot be varied in this case since the solid propellant stages are burned to
fuel depletion. The direction of the velocity increment is controlled by
vehicle orientation and fixed by spin-stabilizing the third and fourth stages

after orientation.

Position and velocity for the guidance computation need be determined at
only one instant of time, and for simplification this is chosen as nominal
third stage ignition time for all flights. The time of flight at which actual
radar data becomes available varies from flight to flight, but it is always
acquired after the vehicle has left the sensible atmosphere. Hence, a form
of Kepler's equations may be used for predicting position and velocity at the
predetermined time from position and velocity derived from the radar data

at any exo-atmospheric read-out time (Reference 1).

In addition to constraining the impact point, the corrections which are com-
puted by these equations must constrain the vehicle to an angle of attack as
near null as possible at a predetermined altitude in order to satisfy test
requirements. However, if the launch dispersions require corrections that
would reduce the re-entry separation distance between the payload and the
fourth stage below a critical minimum, it is necessary to substitute a
separation distance constraint for the angle of attack constraint. The method
used to obtain the solution to the guidance problem is discussed in the next

section.




SECTION 3

METHOD OF SOLUTION

The analytical description of the problem is derived from two basic sets of
information. These are (1) the classical equations of motion and (2) the

equations which analytically express the desired program constraints.

The equations of motion are written in vector form in an earth-centered iner-
tial coordinate system and are integrated to obtain the dynamics equations.
The vari#bles in these equations are the body attitude (expressed in direction
cosinesg), the third stage ignition time (expressed in terms of the fourth stage
burnout time), the time and position at the test altitude and impact, and the
velocity at the test altitude. The dynamics equations comprise a set of nine

nonlinear equations with fifteen unknowns.

Six constraint equations express the desired impact point and either the angle

of attack constraint or separation distance constraint in terms of the variables
in the equations of motion. This results in a total set of fifteen equations

with fifteen unknowns. The simultaneous solution of these nonlinear equations

yields the required attitude and ignition time of the third stage.

A linear solution of these equations, made possible by expanding the nonlinear
terms in a Taylor series or equivalent technique and retaining only first order
terms, will not result in a solution which is sufficiently accurate over the
required range of inputs. The significant part of the inaccuracy in this solu-
tion is a result of the linearization of terms involving products of two varia-
bles. Because all of these terms are functions of the body attitude, which is
determined in the solution, it is possible to recompute the ''"nominal" values
in the linear approximations for these terms after completing the solution

of the linearized equations. This leads to an iteration procedure which
converges on a solution which is sufficiently close to the solution obtained
from a complete trajectory integration program to meet all of the ATHENA

requirements.
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The solution therefore consists of the following steps.

a.

b.

f.

Integrate the differential equations of motion to obtain
nonlinear dynamics equations.

Write algebraic equations which analytically deacribe the
system constraints.

Linearize these equations, where necessary, using a Taylor
series expansion or equivalent technique and retain only
nominal and first order terms.

Solve the linearized equations for the unknown variables,
which include the direction cosines of the body axis and the
third stage ignition time.

Recompute the '"'nominal" terms which are functions of body
attitude in the Taylor series approximation.

Repeat steps d and e until the body attitude does not change.

The derivation of these equations is described in detail in the remainder of

this report.

The solution has been programmed on a digital computer and is

presently part of the real-time computer program that is used in the guidance
and command of the ATHENA vehicle. .



SECTION 4

THE DERIVATION

4.1 DYNAMICS EQUATIONS

The dynamics equations are derived in vector form starting with Newton's

law,
F = mD (1)

Figure 1 is a geometric description of the problem.

The acceleration of the vehicle results from gravitational and thrust forces,

therefore
F=m(a+g) (2)
and

D=a+g (3)

Integrating both sides of Equation (3) from t, to t (Figure 2 is a description

R
of the time notation) where t > t1' and rearranging yields

. t t ,
2:1_3R+["_a_dt+f g dt (4)
0 'R

-T7-
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Integrating both sides of Equation (4) from tptot where t > t_ and re-

arranging terms gives
- t.rt te
2=2R+_DR(t-tR)+f/ Edtdtl+(t-t_r)f adt
to o to

+_[tjtlgdtdtl (5)

R R

The velocity increment due to the third and fourth stage thrusting is

t
AV?/Tadt (6)
AN S

The distance traveled during third and fourth stage thrusting due only to the

vehicle propulsion system is

t t
Déf Tfladtdt (7
- Jt_Jt. T !

0 0

At the time the vehicle reaches the test altitude, t = t and Equation (5)

becomes

t t

_ : Tt
Dy = Dy + Dplty - tg) + AD+ AV(ty - t) +( /t' g dt dt, (8)

R 'R
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At the time the vehicle reaches the impact point, t = tI and Equation (5)

becomes
. t; ot
Dy = Dp + Dplt; - tp) + AD + AV(t, - t) +/t' jt' gdtadt (9)
R 'R

An equation which relates the velocity at the test altitude to the other
problem variables is required because of the angle of attack constraint.
At the time the vehicle reaches the test altitude,t = tT and Equation (4)

becomes

g dt (10)

Since the air mass is assumed to rotate with the earth, the required velocity

equation is
dp, =D -wXD (11)
dt=T =T ="Z=7

Substituting Equation (10) into Equation (11) gives

: t
%2T=2R+_Ay_+ngdt—gx_DT (12)
t
R

Equations (8), (9) and (12) represent the nine scalar equations that define

the dynamics from tp tot.

<11~
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4.2 LINEARIZING THE DYNAMICS EQUATIONS

In Equations (8) and (9), terms of the form (av) (ti) where i = T, I, + must
be linearized because they are products of the unknown variables. The

linearization in this case is performed in the following manner.

Let
Av = -é-Y-N + 64V (13)
and
tp = ton + Otp (14)
therefore
(AVMEg) = (AVy + 68Vt + 6t.) (15)

Expanding and neglecting products of perturbations

@V (tp) m AV(ty ) + AV () - AV (tpy) (16)

Similar expressions result for tI and t-r'

- In Equations (8), (9) and (12) the terms involving g are linearized as

follows.

t t
[ Teanf ™gar- gty -t (17)
'R 'R

-12-




and

t t t t t
/T] l_gdtdtla.[: TN'/t‘ ‘gdtdtlutT-tTN)ft TNg at (18)
'R "R R 'R R

and t..

A similar equation results for the double integral of g between tR I

The linearized form of Equations (8), (9), and (12) is presented in the

linearized equation summary.

Because the solid propellant engines are burned to fuel depletion, the
magnitudes of AV and AD are constants which can be determined before
flight. The spin stabilization of the third and fourth stages orients the vehicle

in inertial space and as a result AV and AD are parallel and are completely

defined by their magnitudes and the direction cosines of the bodyrollaxis. That

is, AD can be expanded as a function of the body axis direction cosines as
follows

4D = |ap|(DCx) i + |aD|(DCy)j + |aD|(DCz)k (19)

The vectors D, and ER can be determined from the radar data at the pre-

R
selected time tR. The vector w is the rotation rate of the earth and the

terms involving g have been linearized as shown in Equations 17 and 18.

Only the three body axis direction cosines are unknown in the vectors AV
and AD. The other unknowns in Equations (8), (9), and (12) are: DT’ three;
— d . . .
tT’ one; t‘r’ one; —DI' three; tI' one; and-&_lz.r. three. The final count finds

nine equations and fifteen unknowns. Therefore, six constraint equations

must be written to complete the analytical description of the problem.

-13-




4.3 DIRECTION COSINE CONSTRAINT

The first of the six constraints relates the three body axis direction cosines

of which only two are independent. The equation is

(DCx)? + (DCy)? + (DC2)% = 1 (20)

To linearize Equation (20), let

DCx = DCvN + 6DCx (21)
DCy = DCy,, + 6DCy (22)
DCz = DCzN + 6DCz (23)

Substituting Equations (21), (22), and (23) into Equation (20), expanding, and
neglecting products of perturbations, yields

(DCx)(DCxy) + (DCy)(DCyy) + (DCz)(DCz) = 1 (24)

This is the linearized direction cosine constraint.

4.4 IMPACT POINT CONSTRAINT

The impact point constraint can be written from inspection of Figure 1. It is
simply

b= E; (25)

Because the transformation between the earth fixed coordinate system and
the inertial coordinate system is a function of the unknown time tI, the exact

values of thecomponents of EI are not known before flight in the inertial

-14-




coordinate system. To overcome this problem, the right hand side of
Equation (25) is replaced by the first two terms of its Taylor series expansion
(26)

Er= Eny + Ennlty - 4y

in addition

.4
En T EN X En (27

Because the rate of change of E,

IN in the earth fixed system is zero, Equation

(27) becomes

En=eXEn (28)
therefore
Dy~Epn v X Enly - 4y (29)

Equation (29) is the linear form of the impact point constraint.
4.5 TEST ALTITUDE CONSTRAINT

The test altitude constraint defines the altitude at which the angle of attack or
separation distance constraint applies. By inspection this constraint can be

written as follows.
Dyl = IDpy ! (30)

Equation (30) must be linearized to allow a linear solution of the whole system

of equations. This linearization is effected as follows.

-15-




First, rewrite the constraint as

2 _ 2
IDp %= IDpy | (31)
which can be written as
Dy Dy =Dpy - Dpy (32)
Let
ET = P-TN + ..62'1‘ (33)

Using Equation (33) and neglecting products of perturbations, the left hand

side of Equation (32) becomes

Dy Dp=Dpy Dyt ¢Dry @T (34)

However
6Dt = Dy - Dqn (35)

therefore
Dy - Dy ®2Dpy - By - Dy Py (36)

Substituting Equation (36) into Equation (32) and rearranging the terms yields

the required linear constraint.

Drn - Byn=Dpn D7 (37)

-16-
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4.6 ANGLE OF ATTACK CONSTRAINT

From a re-entry test viewpoint, it is desirable to have the capability to
provide near null angle of attack at a specified altitude. This requirement
can be fulfilled by the ATHENA vehicle without an active attitude control
system on the payload. Due to its simplicity the vehicle cannot always
completely null the angle of attack even with perfect system operation.
However, the small variations about null that do occur do not compromise

the test objectives.

Because the vehicle is spin stabilized the body axis andé_V_ (the velocity

added by the third and fourth stages) are parallel. Therefore if AV and

%ET are parallel,the angle of attack will be nulled. From Figure 3 it

can be seen that the integral of g adds a degree of freedom in the vertical

plane that is not present in the horizontal plane. Because there is insufficient

freedom in the horizontal plane the impact point and angle of attack constraints
t can conflict. This conflict is best visualized as follows. It can be seen in

Figure 3 that th.e velocity increment, AV, will have to be parallel to the

vector sum of D, and w XQT to null angle of attack in the horizontal plane.

R
In most cases this attitude would not result in a proper impact. Therefore

the angle of attack in this plane cannot always be nulled. This problem is
not present in the vertical plane because of the extra degree of freedom

resulting from the integral of g.

This restriction does not compromise the usefulness of the system because

the deviations from zero angle of attack in the horizontal plane are within
acceptable limits. However, the angle of attack constraint equation must
be written in a manner that will not result in unrealizable solutions.
Therefore, it is necessary to write a constraint equaticn that causes only
the angle of attack in the vertical plane to be nulled. The derivation of

this constraint equation follows.

-17-
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The angle of attack constraint equation is written from inspection of
Figure 4. The vector iTN is normal to the vertical plane defined by

ETN and AY_N; that is,

= av (38)

;!-TN ~TN x —N

d Lo . X .
Therefore, aET X £TN lies in this vertical plane and is normal

to a-t- ET.
If

(d Dr X Lry) - &Y =0 (39)

then AV must lie in the plane shown in Figure 4. Therefore, the projections

°f‘<%2r and AV in the vertical plane must be parallel. This satisfies the

angle of attack constraint.

This constraint is linearized as follows. Write Equation (39) in an alternate

form.
Leno (AYX%P_T) =0 (40)
Let
AV = AVy + 04V (41)
and
'c%P-Tz'c%QTN"b'c%QT (42)

-19-







’ ‘ﬂ!ﬁ%}«!ﬁ"

pre e

L

S ST R AT P Ak s

Substituting Equations (41) and (42) into Equation (40), expanding and

neglecting products of perturbations yields

d . . (4 N 4
F D Wy XAV + AV (g Dy X Lypg) ™ AV (@ Rrn * Lyy) (43)

Equation (43) is the linear form of the angle of attack constraint.
4.7 SEPARATION DISTANCE CONSTRAINT

Some of the experiments require a minimum separation distance between
the payload and the expended fourth stage at a given altitude. Since the
separation velocity increment due to the fourth stage retro rockets is
determinced before the flight and scparation occurs at a fixed time after
burnout, the scparation distance can be maintained by controlling the time

between burnout and arrival at the test altitude.

That is,

Koo =t - t (44)

This is the scparation distance constraint.

.21-
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SECTION 5

LINEARIZED EQUATION SUMMARY

The linearized dynamics equations are as follows.

Dy = Dp + Dplty - tg) + AD + AV (tyyy - t o) + AV(t - toy)

N rh TN
tAV(ty - t) + gdtadt, + (tp - to) gdt  (45)
ta  “tg t

Dy = Dg * Dplty - tg) + AD + AV(tyy - o) + AV by - tyy)
v 8 ‘N
1 tAV(t - t) + gdtdt, + (t; -ty ) g dt (46)
'R R R
brN
d e
H'EET_ER+ﬂ+ f Edt’ETN(tTN - tT) -w XDn (47)
'R
The direction cosine constraint is
1= (DCx)(DCxN) + (DCy)(DCyN) + (DCz)(DCzN) (48)
The impact point constraint is
Dp=Epn*teXEmnlt -t (49)

-23.




The test altitude constraint is

DN Brn = 21N B (50)

The angle of attack constraint is

d ' d _ 4
TiDr Wpn XAV + AV - (Do X L) = AV " G Dow X L) (51

The separation distance constraint is

Kop=t, -t (52)

)



SECTION 6

THE ITERATION LOOP, LINEARIZATIONS, AND ACCURACY

There are three types of terms that have been linearized. These are, (1)
terms which are functions of body attitude and time, (2) vectors from the
center of the earth to the vehicle, and (3) terms which are functions of

gravity.

The simple solution of the set of linearized equations will not provide a
sufficiently accurate solution for the body attitude and third stage ignition
time if the position and velocity at tR are dispersed from the nominal values
by reasonable amounts. This is mainly due to the linearization of the body
attitude dependent terms and is overcome with the use of the following

iteration procedure.

Because the body attitude (expressed as direction cosiies) is determined in
the solution of the equations, it is possible to recompute all of the so called
"nominal" terms which are functions of body attitude after the solution is
complete. Starting with values obtained from the nominal trajectory and
recomputing all of the '"'nominal" terms that are functions of body attitude
after the solution of the equations leads to an iterative procedure. This
iteration procedure converges on solutions which do not contain errors
resulting from the body attitude dependent terms. Perhaps this is more
easily understood by examining a particular example. Consider the term

(A_Y) (tT). The linearization used for this term is

pe————

Because the criterion for convergence is that the direction cosines used to
compute the components of AVN are identical to those found from the solution

of the equations, the components of AV and A_VN are equal when the iteration

-25-




is completed. Therefore, the first and last terms on the right hand side of
Equation (53) cancel and, since ﬂ equals _A_Y_N, the iteration process has
nullified errors due to this linearization. Similar reasoning applies to all of
the terms which involve body attitude. A diagram of the iteration loop is

shown in Figure 5.

Terms containing integrals of g have been linearized by expanding them

in a Taylor series and retaining only first order terms, with the integrals

of g considered to be only functions of time. Consequently, the first order
position dispersions were disregarded as were the higher order and

cross product terms. The adequacy of this assumption has been verified by
comparing solutions from the guidance equations with equivalent solutions
obtained from a trajectory integration program. It was found that the gravity
integral approximations introduce the most significant errors into the guidance
equations, but these errors are an order of magnitude smaller than those
introduced by other links in the guidance loop (e.g., radar and attitude con-

troller errors) and consequently they can be tolerated.

Because of the nature of the vectors from the center of the earth to the
vehicle, the linearization of these vectors does not significantly affect the
accuracy of the solution. The solution of the present equations with the
iteration on the direction cosines results in an accuracy which easily meets

all of the program objectives for the ATHENA missions.

-26-
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APPENDIX 1

SCALAR EQUATIONS

The expansion of the vector equations in the linearized equation summary

to obtain the required scalar equations is presented in this appendix.

The scalar components of Equaticn (45) are obtained using the expansion

of elz shown in Equation (19) and a similar expansion for Q\L and ﬂN'

The scalar components are shown in Equation (54) for i = x, y, z.

Dp; = Dg; + Dyt - tg) + [AD|DCi + |AV [(tpy - t \)DCi

+ AV [(DCip Mt o - tpp) + AV [(DCig(ty - t)

t t t
TN 1 TN
+_£ j; g.dt dt; + (tp - tTN)/t' g dt (54)
R R R

Equation (54) can be rewritten in the form
Ai = (--l)D,I.i + (Ci)tT + (Fi)DCi + (('in)t-r (55)

where

t
TN

Ay = ‘TN_[ Sid"]
R t

- |AV [(DCig)t _ = tppy) (56)

R 'R




: ‘TN
Ci = |é_\_l_[(DC1N) + Dri + f gidt (57)
t
R
F, = [aD] + |&V[(tpy = toN) (58)
G, = -]|AV|(DCiy) (59)

The scalar components of Equation (46) are obtained in a manner similar to
the method used to derive Equation (54) and can be written in the following

form, fori=x, y, 2.

a, = (-1)Dy; + (e))t; + (£,)DCi + (h)t_ (60)

where

t t t
) IN IN 4 -
a, = tINf g;dt - f f gdt dt, - Dp. + Dpito
tr t t

R R
- AV [(DCi Mt - t1py) (61)
- ‘N
e, = |AV|DCiy + D, + f g dt (62)
t
R
fi = IS‘EI + 'Q’.l(tIN - tTN) (63)
h, = - |AV|DCiy (64)

wsid ®
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The scalar components of Equation (47) are shown in Equations (65), (66),
and (67).

d - tTN
3t D1x = DRy * |8Y|DCx + ‘/t. €3t - Brpnyltrn - tr)

-tz+wD (65)

t
d e TN
I DTY = DRY + |AV|DCy + ‘/t‘ gydt - gTNy(tTN - tT)
R
+ wxDTz - szTx (66)
d 5 5 4iavipcz+ [ TNy at - (e = t.)
3t D1, = D, t |4Y|DCz g, BTNzV'TN " 'T

J R

-wD +w D 7 (67)

These equations can be written in the following form for i = x, vy, z.

4

1<i = (-1)dt DTi + (ni)DCi + (ri)tT + (wi)DTx + (si)DTy + (vi)DTz (68)

where

t
. TN
kj = -Dpy - £ g;dt + grnitrn (69)
R
n; = |av] 70)
i T 8TNi (1)




N T (712)
s, = o, , sy =0 ) s, = "W, (73)
Vi =Yy ' Vy o ' v, =0 (74)

The scalar components of Equation (49) are shown in Equations (75}, (76),

and (77).

D = Epng ¥ @pEng = “2 BNy (1 - U (75)
Dy = Einy * @2 By = “xFing! 1 - U (76)
Dp, = Eing t (9 Finy = “yFind 1 - N (77

These equations can be written as follows fori = x, y, z.
a, = (-1)D + (y;)t; (78)

where

% = “Brne * Oy F NG - 2By tin (79)
oy = ~Bryy + ©,E g - % EINg N (80)
o, = “Eing * O Finy - OpEmutin (81)
(82)

Yx = (waINz - szINy)

el
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Yy = (szINx - wxEINz)
Yz *© (wxEINy - waINx)
The scalar expansion of Equation (50) is shown below

Drn' Brn = 2rn Dp

therefore

|D

2
—-TNI = (D

+ (D + (D

TNe'P1x * (PTNnyPry * (Prn, )Py

The expansion of Equation (51) has the following form

(Nx)%DTx + (Ny)a‘-lt-DTy + (Nz)a-dt-DTz +(T_)DCx
+(T )DCy + (T,)DCz = W
where
N, = L1 |4V [DCay - 1 |AV|DCyy
N, = Ly, 18V [DCxy - £y |AV|DCay

N, = LNy [AVIDCyy = Ly AV [DCxy
- d d
T, = UAYD{Ep, PNy - !Ny PTNG)

_ d d
Ty = U Dty 07Nz - TNz T PTNx)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)
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[}

d d
2 = UAY (LN, T PrNx - AredE D)

W= fﬂ’DC"N(‘TNz;}'DTNy - ’TNyadT Dre)
+ 18V DOy Ly DTy - Loz 38 P
* ’é\i'DCZN(‘TNy%DTNx - ’TNx'c?EDTNy)
and
Lrnx = Doy 14V |DCzy - Dy, [AV[DCyy
LrNy = DoNg [AYDCxy - Dy, | AV [DCzy
Lrng = DTNx’A—V’DvaN - Dpy &Y [DCxy

(93)

(94)

(95)

(96)

(97)

The scalar, linearized equations are presented in matrix form in Equation

(98) on the following page. Any symbols that are used in this set of equations

that are not defined in the Glossary are defined by equations in this appendix.

O

-




- A - - -
' \x «1 1] 0 ('x 0 0 0 0 l-‘x 4] 0 G, 0 0 0 DI‘x
\ - 0 0 [} o ¥ 3
N 0 1 ("y [ ] v [ G (] 0 o Dly
:\A 0 [} , =1 (‘[ 0 0 0 0 0 0 }“1 Cz 0 ] ) Drz
1 0 [ ] 0 -1 [ 0 o f 0 0 h 0 o o t
X x 3 x I
. 0 1] 0 [ 0 -1 0 [ [} { 0 h 0 0 0 D,
Y Yy y y Ix
4 0 [} 0 0 0 0 -1 e 0 ] [} h 0 0 0 D
z z z z Iy
kx [ Sy Ve Ty [} 0 0 [} n 0 0 0 -1 0 (1] l')Iz
k ; 0 0 -
v Wy 0 vy r, 0 0 0 ny 0 0 0 1 ] Y (98)
k w - [} r 0 0 4] 0 0 0 n 0 [} 0 ~1 DCx
, & 7/ 7 z
a 0 0 0 0 -} 0 0 Y 0 0 0 0 G 0 o DCy
a 0 0 0 o 0 1 ] \y Q Q 0 0 0 o 0 DCz
n [} 0 [ 0 [} o -1 Y 0 0 U 0 0 0 0 t
’ z T
' d
2[\ Dl\'x Dl'\y Dl'\/ 0 0 0 0 0 0 [} 0 0 0 0 o] ZTDrx
R d
L s 0 0 0 n 0 0 0 0 lx lv l"l n T\X Y\y !\z H’{Dly
- - o n o o 0 0 o Dbox, DGy DG o o o ol [dp
N N N ;s
L Jo J06
If the earth centered inertial coordinate system is oriented with the z axis
aligned with the earth's spin vector w_=s_=v_=v_ =0,
z z x y
If the separation distance constraint is required, the 14th row of the matrix
is replaced by the equation
K = t., -t (99)
T T T




APPENDIX 2

GL.OSSARY

The symbols used in this document are shown graphically in Figures 1 and 2

in addition to being defined in this glossary.
A line under a letter (i) is used to denote a vector quantity.

A dot above a vector (i) is used to denote the time derivative of the vector

relative to an inertial coordinate frame.

Two dots above a vector (X)are used to denote the second time derivative of

the vector relative to an inertial coordinate frame.

The symbol (a% z) is used to denote the time derivative of the vector x

relative to a rotating coordinate frame.

The first subscript on a vector is used to denote the time at which the vector

is expressed.

The subscript N is used to denote nominal parameters. Those nominal
parameters which are functions of body attitude are recomputed for each

iteration (see Page 25).

a = the thrust acceleration of the vehicle.

D = the vector from the center of the earth to the vehicle.

DCx s
DCy = the three directions cosines of the vehicle body roll axis in
DCz the earth centered inertial coordinate system.

E = the vector from the center of the earth to the desired

- vacuum inpact point.

F = total applied force.

4 = the acceleration due to gravity.
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g

orthogonal unit vectors defining the earth centered inertial
coordinate system, ’

convergence constant.

the time between fourth stage burnout and arrival at the test
altitude that satisfies the separation distance constraint.

the vector normal to the nominal vertical plane.
mass.

the vector from the desired vacuum impact point to the center
of the radar coordinate system.

the vector from the radar coordinate system center to the
vehicle.

time (see Figure 2 for specific definitions).
the perturbation from the nominal.

the distance travelled during the third and fourth stage thrust-
ing due only to propulsion forces.

the velocity increment due to the third and fourth stage
thrusting.

the time between third stage ignition and fourth stage
burnout.

the rotation rate of the earth,
time at test altitude.

end point for Keplerian transfer of radar data (chosen as
nominal third stage ignition time).

third stage ignition time.

fourth stage burnout time.

time of impact.

time when adequate radar measurements are available.
second stage burnout time.

launch time.
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